Lecture 16: Earth-Mover Distance
Administrivia, Plan

• Administrivia:
 – NO CLASS next Tuesday 11/3 (holiday)

• Plan:
 – Earth-Mover Distance

• Scribe?
Earth-Mover Distance

• Definition:
 – Given two sets A, B of points in a metric space
 – $EMD(A, B) = \min \text{ cost bipartite matching between } A \text{ and } B$

• Which metric space?
 – Can be plane, ℓ_2, ℓ_1...

• Applications in image vision

Images courtesy of Kristen Grauman
Embedding EMD into \(\ell_1 \)

- Why \(\ell_1 \)?
- At least as hard as \(\ell_1 \)
 - Can embed \(\{0,1\}^d \) into EMD with distortion 1
- \(\ell_1 \) is richer than \(\ell_2 \)

- Will focus on integer grid \([\Delta]^2\):
Embedding EMD into ℓ_1

[Charikar’02, Indyk-Thaper’03]

- **Theorem:** Can embed EMD over $[\Delta]^2$ into ℓ_1 with distortion $O(\log \Delta)$. In fact, will construct a randomized $f: 2^{[\Delta]^2} \rightarrow \ell_1$ such that:
 - for any $A, B \subset [\Delta]^2$:
 \[
 EMD(A, B) \leq E[\|f(A) - f(B)\|_1] \leq O(\log \Delta) \cdot EMD(A, B)
 \]
 - time to embed a set of s points: $O(s \log \Delta)$.

- **Consequences:**
 - Nearest Neighbor Search: $O(c \log \Delta)$ approximation with $O(sn^{1+1/c})$ space, and $O(n^{1/c} \cdot s \log \Delta)$ query time.
 - Computation: $O(\log \Delta)$ approximation in $O(s \log \Delta)$ time
 - Best known: $1 + \epsilon$ approximation in $\tilde{O}(s)$ time [AS’12]
What if $|A| \neq |B|$?

• Suppose:
 - $|A| = a$
 - $|B| = b < a$

• Define

$$EMD_\Delta(A, B) = \Delta(a - b) + \min_{A',\pi} \sum_{a \in A'} d(a, \pi(a))$$

where

- A' ranges over all subsets of A of size b
- $\pi: A' \to B$ ranges over all 1-to-1 mappings

For optimal A', call $a \in A \setminus A'$ unmatched
Embedding EMD over small grid

- Suppose $\Delta = 3$

- $f(A)$ has nine coordinates, counting # points in each integer point
 - $f(A) = (2,1,1,0,0,0,1,0,0)$
 - $f(B) = (1,1,0,0,2,0,0,1)$

- **Claim:** $2\sqrt{2}$ distortion embedding
High level embedding

- Set in $[\Delta]^2$ box
- Embedding of set A:
 - take a quad-tree
 - grid of cell size $\Delta/3$
 - partition each cell in 3x3
 - recurse until of size 3x3
 - randomly shift it
 - Each cell gives a coordinate:
 \[
 f(A)_c = \# \text{points in the cell } c
 \]
- Want to prove
\[
E \left[\|f(A) - f(B)\|_1 \right] \approx EMD(A, B)
\]
Main idea: intuition

- Decompose EMD over $[\Delta]^2$ into EMDs over smaller grids
- Recursively reduce to $\Delta = O(1)$
Decomposition Lemma

- For randomly-shifted cut-grid G of side length k, will prove:
 1) $\text{EMD}_\Delta(A, B) \leq \text{EMD}_k(A_1, B_1) + \text{EMD}_k(A_2, B_2) + \cdots + k \cdot \text{EMD}_{\Delta/k}(AG, BG)$
 2) $\text{EMD}_\Delta(A, B) \geq \frac{1}{3} E[\text{EMD}_k(A_1, B_1) + \text{EMD}_k(A_2, B_2) + \cdots]$
 3) $\text{EMD}_\Delta(A, B) \geq E[k \cdot \text{EMD}_{\Delta/k}(A_G, B_G)]$

- The distortion will follow by applying the lemma recursively to (A_G, B_G).
1 (lower bound)

- **Claim 1:** for a randomly-shifted cut-grid G of side length k:
 \[
 EMD_\Delta(A, B) \leq EMD_k(A_1, B_1) + EMD_k(A_2, B_2) + \ldots + k \cdot EMD_{\Delta/k}(A_G, B_G)
 \]

- Construct a matching π for $EMD_\Delta(A, B)$ from the matchings on RHS as follows:
 - For each $a \in A$ (suppose $a \in A_i$) it is either:
 1) matched in $EMD(A_i, B_i)$ to some $b \in B_i$ (if $a \in A_i'$)
 - then $\pi(a) = b$
 2) or $a \notin A_i'$, and then it is matched in $EMD(A_G, B_G)$ to some $b \in B_j$ ($j \neq i$)
 - then $\pi(a) = b$

- **Cost?**
 1) paid by $EMD(A_i, B_i)$
 2) Move a to center (Δ)
 - Charge to $EMD(A_i, B_i)$
 Move from cell i to cell j
 - Charge k to $EMD(A_G, B_G)$
 - If $|A| > |B|$, extra $|A| - |B|$ pay $k \cdot \frac{\Delta}{k} = \Delta$ on LHS & RHS
2 & 3 (upper bound)

- **Claims 2,3:** for a randomly-shifted cut-grid G of side length k, we have:
 2) $EMD_\Delta(A, B) \geq \frac{1}{3} E[EMD_k(A_1, B_1) + EMD_k(A_2, B_2) + \cdots]$
 3) $EMD_\Delta(A, B) \geq E[k \cdot EMD_{\Delta/k}(A_G, B_G)]$

- Fix a matching π minimizing $EMD_\Delta(A, B)$
 - Will construct matchings for each EMD on RHS

- **Uncut** pairs $(a, b) \in \pi$ are matched in respective (A, B)

- **Cut** pairs $(a, b) \in \pi$:
 - are unmatched in their mini-grids
 - are matched in (A_G, B_G)
3: Cost

- **Claim 2:**
 - $3 \cdot EMD_\Delta(A, B) \geq E[EMD_k(A_1, B_1) + EMD_k(A_2, B_2) + \cdots]$
 - Uncut pairs (a, b) are matched in respective (A_i, B_i)
 - Total contribution from uncut pairs $\leq EMD_\Delta(A, B)$
 - Consider a cut pair (a, b) at distance $a - b = (d_x, d_y)$
 - (a, b) can contribute to RHS as they may be *unmatched* in their own mini-grids
 - $Pr[(a, b) \text{ cut}] = 1 - \left(1 - \frac{d_x}{k}\right)_+ \left(1 - \frac{d_y}{k}\right)_+ \leq \frac{d_x}{k} + \frac{d_y}{k} \leq \frac{1}{k} ||a - b||_2$
 - Expected contribution of (a, b) to RHS:
 - $\leq Pr[(a, b) \text{ cut}] \cdot 2k \leq 2||a - b||_2$
 - Total expected cost contributed to RHS:
 - $2 \cdot EMD_\Delta(A, B)$
 - **Total (cut & uncut pairs):** $3 \cdot EMD_\Delta(A, B)$
3: Cost

• **Claim:**

 \[EM D_\Delta (A, B) \geq E[k \cdot EM D_\Delta/k (A_G, B_G)] \]

• Uncut pairs: contribute zero to RHS!

• Cut pair: \((a, b) \in \pi\) with \(a - b = (d_x, d_y)\)

 - if \(|d_x| = xk + r_k\), and \(|d_y| = yk + r_y\), then

 - expected cost contribution to \(k \cdot EM D_\Delta/k (A_G, B_G)\):

 \[\leq \left(x + \frac{r_x}{k}\right) \cdot k + \left(y + \frac{r_y}{k}\right) \cdot k = d_x + d_y = ||a - b||_2 \]

• Total expected cost \(\leq EM D_\Delta (A, B)\)
Recurse on decomposition

• For randomly-shifted cut-grid G of side length k, we have:
 1) $EMD_\Delta(A, B) \leq EMD_k(A_1, B_1) + EMD_k(A_2, B_2) + \ldots$
 \hspace{1cm} $+ k \cdot EMD_{\Delta/k}(AG, BG)$
 2) $EMD_\Delta(A, B) \geq \frac{1}{3} E[EMD_k(A_1, B_1) + EMD_k(A_2, B_2) + \ldots]$
 3) $EMD_\Delta(A, B) \geq E[k \cdot EMD_{\Delta/k}(A_G, B_G)]$

• We applying decomposition recursively for $k = 3$
 – Choose randomly-shifted cut-grid G_1 on $[\Delta]^2$
 – Then choose randomly-shifted cut-grid G_2 on $[\Delta/3]^2$
 – Obtain more grids $[3]^2$, and another big grid $[\Delta/9]^2$
 – Then choose randomly-shifted cut-grid G_3 on $[\Delta/9]^2$
 – …

• Then, embed each of the small grids $[3]^2$ into ℓ_1, using $O(1)$ distortion embedding, and concatenate the embeddings
 – Each $[3]^2$ grid occupies 9 coordinates on ℓ_1 embedding
Proving recursion works

- **Claim:** embedding contracts distances by $O(1)$:
 \[EMD_\Delta(A, B) \leq \]
 \[\leq \sum_i EMD_k(A_i, B_i) + k \cdot EMD_{\Delta/k}(A_{G_1}, B_{G_1}) \]
 \[\leq \sum_i EMD_k(A_i, B_i) + k \sum_i EMD_k(A_{G_1,i}, B_{G_1,i}) \]
 \[+ k \cdot EMD_\Delta k^2 (A_{G_2}, B_{G_2}) \]
 \[\leq \ldots \]
 \[\leq \text{sum of } EMD_3 \text{ costs of } 3 \times 3 \text{ instances} \]
 \[\leq \frac{1}{2\sqrt{2}} \|f(A) - f(B)\|_1 \]

- **Claim:** embedding distorts distances by $O(\log \Delta)$ in expectation:
 \[(3 \log_k \Delta) \cdot EMD_\Delta(A, B) \]
 \[\geq 3 \cdot EMD_\Delta(A, B) + \left(3 \log_k \frac{\Delta}{k}\right) \cdot EMD_\Delta(A, B) \]
 \[\geq \mathbb{E}[\sum_i EMD_k(A_i, B_i) + \left(3 \log_k \frac{\Delta}{k}\right) \cdot k \cdot EMD_{\Delta/k}(A_{G_1}, B_{G_1})] \]
 \[\geq \ldots \]
 \[\geq \text{sum of } EMD_3 \text{ costs of } 3 \times 3 \text{ instances} \]
 \[\geq \|f(A) - f(B)\|_1 \]
Final theorem

- **Theorem:** can embed EMD over $[\Delta]^2$ into ℓ_1 with $O(\log \Delta)$ distortion in expectation.
- **Notes:**
 - Dimension required: $O(\Delta^2)$, but a set A of size s maps to a vector that has only $O(s \cdot \log \Delta)$ non-zero coordinates.
 - Time: can compute in $O(s \cdot \log \Delta)$
 - By Markov’s, it’s $O(\log \Delta)$ distortion with 90% probability
- **Applications:**
 - Can compute $EMD(A, B)$ in time $O(s \cdot \log \Delta)$
 - NNS: $O(c \cdot \log \Delta)$ approximation, with $O(n^{1+1/c} \cdot s)$ space, and $O(n^{1/c} \cdot s \cdot \log \Delta)$ query time.