Lecture 7: Dynamic sampling

Dimension Reduction

Plan

Admin:

- PSet 2 released later today, due next Wed
- Alex office hours: Tue 2:30-4:30

• Plan:

- Dynamic streaming graph algorithms
- S2: Dimension Reduction & Sketching

• Scriber?

Sub-Problem: dynamic sampling

• Stream: general updates to a vector $x \in \{-1,0,1\}^n$

Goal:

– Output *i* with probability $\frac{|x_i|}{\sum_j |x_j|}$

Dynamic Sampling

- Goal: output i with probability $\frac{|x_i|}{\sum_j |x_j|}$
- Let $D = \{i \text{ s.t. } x_i \neq 0\}$
- Intuition:
 - Suppose |D| = 10
 - How can we sample i with $x_i \neq 0$?
 - Each $x_i \neq 0$ is a 1/10-heavy hitter
 - Use CountSketch ⇒ recover all of them
 - $O(\log n)$ space total
 - Suppose $|D| = 10\sqrt{n}$
 - Downsample: pick a random set $I \subset [n]$ s.t. $\Pr[i \in I] = \frac{1}{\sqrt{n}}$
 - Focus on substream on $i \in I$ only (ignore the rest)
 - What's $|D \cap I|$?
 - In expectation = 10
 - Use CountSketch on the downsampled stream I...
 - In general: prepare for all levels

Basic Sketch

- Hash function $g:[n] \rightarrow [n]$
- Let h(i) = #tail zeros in g(i)
 - $-\Pr[h(i) = j] = 2^{-j-1} \text{ for } j = 0..L 1 \text{ and } L = \log_2 n$
- Partition stream into substreams $I_0, I_1, ... I_L$
 - Substream I_j focuses on elements with h(i) = j
 - $-E[|D \cap I_j|] = |D| \cdot 2^{-j-1}$
- Sketch: for each j = 0, ... L,
 - Store CS_i : CountSketch for $\phi = 0.01$
 - Store DC_i : distinct count sketch for approx=1.1
 - F₂ would be sufficient here!
 - Both for success probability 1 1/n

Estimation

- Find a substream I_j s.t. DC_j output $\in [1,20]$
 - If no such stream, thenFAIL
- Recover all $i \in I_j$ with $x_i \neq 0$ (using CS_j)
- Pick any of them at random

```
Algorithm DynSampleBasic:
Initialize:
  hash function g:[n] \to [n]
  h(i) = \# tail zeros in g(i)
  CountSketch sketches CS_i, j \in [L]
  DistinctCount sketches DC_i, j \in [L]
Process(int i, real \delta_i):
  Let i = h(i)
  Add (i, \delta_i) to CS_i and DC_i
Estimator:
  Let j be s.t. DC_i \in [1,20]
  If no such j, FAIL
  i = random heavy hitter from <math>CS_i
  Return i
```

Analysis

- If |D| < 10
 - then $|D \cap I_j| \in [1,10]$ for some j
- Suppose $D \ge 10$
 - Let k be such that $|D| \in [10 \cdot 2^k, 10 \cdot 2^{k+1}]$
- $E[|D \cap I_k|] = |D| \cdot 2^{-k-1}$ $\in [5,10]$
- $Var[|D \cap I_k|] \le |D| \cdot 2^{-k-1} \le 10$
- Chebyshev: $|D \cap I_k|$ deviates from expectation by $4 > \sqrt{1.5 Var}$ with probability at most $\frac{1}{1.5} < 0.7$
 - le., probability of FAIL is at most 0.7

```
Algorithm DynSampleBasic:
Initialize:
  hash function g:[n] \to [n]
  h(i) = \# tail zeros in g(i)
  CountSketch sketches CS_i, j \in [L]
  DistinctCount sketches DC_i, j \in [L]
Process(int i, real \delta_i):
  Let j = h(i)
  Add (i, \delta_i) to CS_i and DC_i
Estimator:
  Let j be s.t. DC_i \in [1,20]
  If no such j, FAIL
  i = random heavy hitter from CS_i
  Return i
```

Analysis (cont)

- Let j with $DC_j \in [1,20]$
 - All heavy hitters = $D \cap I_i$
 - $-CS_j$ will recover a heavy hitter, i.e., $i ∈ D \cap I_i$
- By symmetry, once we output some i, it is random over D
- Randomness?
 - − We just used Chebyshev⇒ pairwise g is OK!

```
Algorithm DynSampleBasic:
Initialize:
  hash function g:[n] \to [n]
  h(i) = \# tail zeros in g(i)
  CountSketch sketches CS_i, j \in [L]
  DistinctCount sketches DC_i, j \in [L]
Process(int i, real \delta_i):
  Let j = h(i)
  Add (i, \delta_i) to CS_i and DC_i
Estimator:
  Let j be s.t. DC_i \in [1,20]
  If no such j, FAIL
  i = random heavy hitter from <math>CS_i
  Return i
```

Dynamic Sampling: overall

- DynSampleBasic guarantee:
 - FAIL: with probability ≤ 0.7
 - Otherwise, output a random $i \in D$
 - Modulo a negligible probability of CS/DC failing
- Reduce FAIL probability?
- DynSample-Full:
 - Take $k = O(\log n)$ independent DynSampleBasic
 - Will not FAIL in at least one with probability at least $1-0.7^k \ge 1-1/n$
 - Space: $O(\log^4 n)$ words for:
 - $k = O(\log n)$ repetitions
 - $O(\log n)$ substreams
 - $O(\log^2 n)$ for each CS_j , DC_j

Back to Dynamic Graphs

- Graph G with edges inserted/deleted
- Define node-edge incidence vectors:
 - For node v, we have vector:

_		~ D1) whore	(n)
•	x_v	$\vdash R^{r}$	p where $p=$	$\binom{2}{2}$

- For j > v: $x_v(v, j) = +1$ if edge (v, j) exists
- For j < v: $x_v(j, v) = -1$ if edge (j, v) exists

	(i,j)		
i	+1		
j	-1		

- Idea:
 - Use Dynamic-Sample-Full to sample an edge from each vertex v
 - Collapse edges
 - How to iterate?
- Property:
 - For a set Q of nodes
 - Consider: $\sum_{v \in O} x_v$
 - Claim: has non-zero in coordinate (i,j) iff edge (i,j) crosses from Q to outside (i.e., $|Q \cap \{i,j\}| = 1$)
- Sketch enough for: for any set Q, can sample an edge from Q!

Dynamic Connectivity

- Sketching algorithm:
 - Dynamic-Sample-Full for each x_v
- Check connectivity:
 - Sample an edge from each node v
 - Contract all sampled edges
 - ⇒ partitioned the graph into a bunch of components $Q_1, ... Q_l$ (each is connected)
 - Iterate on the components Q_1 , ... Q_l
- How many iterations?
 - $O(\log n)$ each time we reduce the number of components by a factor ≥ 2
- Issue: iterations not independent!
 - Can use a fresh Dynamic-Sampling-Full for each of the $O(\log n)$ iterations

A little history

- [Ahn-Guha-McGregor'12]: the above streaming algorithm
 - Overall $O(n \cdot \log^4 n)$ space
- [Kapron-King-Mountjoy'13]:
 - Data structure for maintaining graph connectivity under edge inserts/deletes
 - First algorithm with $(\log n)^{O(1)}$ time for update/connectivity!
 - Open since '80s

Section 2:

Dimension Reduction & Sketching

Why?

Application:

Nearest Neighbor Search in high dimensions

• Preprocess: a set *D* of points

• Query: given a query point q, report a point $p \in D$ with the smallest distance to q

Motivation

- Generic setup:
 - Points model objects (e.g. images)
 - Distance models (dis)similarity measure
- Application areas:
 - machine learning: k-NN rule
 - speech/image/video/music recognition,
 vector quantization, bioinformatics, etc...
- Distance can be:
 - Euclidean, Hamming

Low-dimensional: easy

• Compute Voronoi diagram

• Given query q, perform point location

Performance:

- Space: O(n)

- Query time: $O(\log n)$

High-dimensional case

All exact algorithms degrade rapidly with the dimension d

Algorithm	Query time	Space
Full indexing	$O(\log n \cdot d)$	$n^{O(d)}$ (Voronoi diagram size)
No indexing – linear scan	$O(n \cdot d)$	$O(n \cdot d)$

Dimension Reduction

- Reduce high dimension?!
 - "flatten" dimension d into dimension $k \ll d$
- Not possible in general: packing bound
- But can if: for a fixed subset of \Re^d

