
11

Lecture 7:

Dynamic sampling

Dimension Reduction

Plan

• Admin:

– PSet 2 released later today, due next Wed

– Alex office hours: Tue 2:30-4:30

• Plan:

– Dynamic streaming graph algorithms

– S2: Dimension Reduction & Sketching

• Scriber?

2

Sub-Problem: dynamic sampling

• Stream: general updates to a vector 𝑥 ∈
−1,0,1 𝑛

• Goal:

– Output 𝑖 with probability
𝑥𝑖

 𝑗 |𝑥𝑗|

3

Dynamic Sampling

• Goal: output 𝑖 with probability
𝑥𝑖

 𝑗 |𝑥𝑗|

• Let 𝐷 = {𝑖 s. t. 𝑥𝑖 ≠ 0}
• Intuition:

– Suppose |𝐷| = 10
• How can we sample 𝑖 with 𝑥𝑖 ≠ 0?

• Each 𝑥𝑖 ≠ 0 is a 1/10-heavy hitter

• Use CountSketch ⇒ recover all of them

• 𝑂 log 𝑛 space total

– Suppose 𝐷 = 10 𝑛

• Downsample: pick a random set 𝐼 ⊂ [𝑛] s.t. Pr 𝑖 ∈ 𝐼 =
1

𝑛

• Focus on substream on 𝑖 ∈ 𝐼 only (ignore the rest)

• What’s |𝐷 ∩ 𝐼| ?
– In expectation = 10

• Use CountSketch on the downsampled stream 𝐼…

– In general: prepare for all levels

4

Basic Sketch

• Hash function 𝑔: 𝑛 → [𝑛]

• Let ℎ 𝑖 = #tail zeros in 𝑔(𝑖)
– Pr ℎ 𝑖 = 𝑗 = 2−𝑗−1 for 𝑗 = 0. . 𝐿 − 1 and 𝐿 = log2 𝑛

• Partition stream into substreams 𝐼0, 𝐼1, … 𝐼𝐿
– Substream 𝐼𝑗 focuses on elements with ℎ 𝑖 = 𝑗

– 𝐸 |𝐷 ∩ 𝐼𝑗| = |𝐷| ⋅ 2
−𝑗−1

• Sketch: for each 𝑗 = 0,…𝐿,
– Store 𝐶𝑆𝑗: CountSketch for 𝜙 = 0.01

– Store 𝐷𝐶𝑗: distinct count sketch for approx=1.1
• 𝐹2 would be sufficient here!

– Both for success probability 1 − 1/𝑛

5

Estimation

• Find a substream 𝐼𝑗

s.t. 𝐷𝐶𝑗 output ∈ [1,20]

– If no such stream, then

FAIL

• Recover all 𝑖 ∈ 𝐼𝑗 with

𝑥𝑖 ≠ 0 (using 𝐶𝑆𝑗)

• Pick any of them at

random

6

Algorithm DynSampleBasic:

Initialize:
hash function 𝑔: 𝑛 → [𝑛]
ℎ(𝑖) = # tail zeros in 𝑔(𝑖)
CountSketch sketches 𝐶𝑆𝑗, 𝑗 ∈ [𝐿]

DistinctCount sketches 𝐷𝐶𝑗, 𝑗 ∈ [𝐿]

Process(int 𝑖, real 𝛿𝑖):
Let 𝑗 = ℎ(𝑖)
Add (𝑖, 𝛿𝑖) to 𝐶𝑆𝑗 and 𝐷𝐶𝑗

Estimator:
Let j be s.t. 𝐷𝐶𝑗 ∈ [1,20]

If no such j, FAIL
𝑖 = random heavy hitter from 𝐶𝑆𝑗
Return 𝑖

Analysis
• If 𝐷 < 10

– then 𝐷 ∩ 𝐼𝑗 ∈ [1,10] for some 𝑗

• Suppose 𝐷 ≥ 10
– Let 𝑘 be such that 𝐷 ∈
10 ⋅ 2𝑘 , 10 ⋅ 2𝑘+1

• 𝐸 𝐷 ∩ 𝐼𝑘 = 𝐷 ⋅ 2−𝑘−1

∈ 5,10

• 𝑉𝑎𝑟 𝐷 ∩ 𝐼𝑘 ≤ 𝐷 ⋅ 2−𝑘−1 ≤ 10
• Chebyshev: 𝐷 ∩ 𝐼𝑘 deviates

from expectation by 4 >
1.5𝑉𝑎𝑟 with probability at

most
1

1.5
< 0.7

– Ie., probability of FAIL is at most
0.7

7

Algorithm DynSampleBasic:

Initialize:
hash function 𝑔: 𝑛 → [𝑛]
ℎ(𝑖) = # tail zeros in 𝑔(𝑖)
CountSketch sketches 𝐶𝑆𝑗, 𝑗 ∈ [𝐿]

DistinctCount sketches 𝐷𝐶𝑗, 𝑗 ∈ [𝐿]

Process(int 𝑖, real 𝛿𝑖):
Let 𝑗 = ℎ(𝑖)
Add (𝑖, 𝛿𝑖) to 𝐶𝑆𝑗 and 𝐷𝐶𝑗

Estimator:
Let j be s.t. 𝐷𝐶𝑗 ∈ [1,20]

If no such j, FAIL
𝑖 = random heavy hitter from 𝐶𝑆𝑗
Return 𝑖

Analysis (cont)

• Let 𝑗 with 𝐷𝐶𝑗 ∈ [1,20]

– All heavy hitters = 𝐷 ∩ 𝐼𝑗

– 𝐶𝑆𝑗 will recover a heavy

hitter, i.e., 𝑖 ∈ 𝐷 ∩ 𝐼𝑗

• By symmetry, once we

output some 𝑖, it is
random over 𝐷

• Randomness?

– We just used Chebyshev

⇒ pairwise 𝑔 is OK !

8

Algorithm DynSampleBasic:

Initialize:
hash function 𝑔: 𝑛 → [𝑛]
ℎ(𝑖) = # tail zeros in 𝑔(𝑖)
CountSketch sketches 𝐶𝑆𝑗, 𝑗 ∈ [𝐿]

DistinctCount sketches 𝐷𝐶𝑗, 𝑗 ∈ [𝐿]

Process(int 𝑖, real 𝛿𝑖):
Let 𝑗 = ℎ(𝑖)
Add (𝑖, 𝛿𝑖) to 𝐶𝑆𝑗 and 𝐷𝐶𝑗

Estimator:
Let j be s.t. 𝐷𝐶𝑗 ∈ [1,20]

If no such j, FAIL
𝑖 = random heavy hitter from 𝐶𝑆𝑗
Return 𝑖

Dynamic Sampling: overall
• DynSampleBasic guarantee:

– FAIL: with probability ≤ 0.7
– Otherwise, output a random 𝑖 ∈ 𝐷

• Modulo a negligible probability of 𝐶𝑆/𝐷𝐶 failing

• Reduce FAIL probability?

• DynSample-Full:
– Take 𝑘 = 𝑂(log 𝑛) independent DynSampleBasic

– Will not FAIL in at least one with probability at
least 1 − 0.7𝑘 ≥ 1 − 1/𝑛

– Space: 𝑂(log4 𝑛) words for:
• 𝑘 = 𝑂(log 𝑛) repetitions

• 𝑂(log 𝑛) substreams

• 𝑂(log2 𝑛) for each 𝐶𝑆𝑗, 𝐷𝐶𝑗

9

Back to Dynamic Graphs
• Graph 𝐺 with edges inserted/deleted

• Define node-edge incidence vectors:
– For node 𝑣, we have vector:

• 𝑥𝑣 ∈ 𝑅
𝑝 where 𝑝 =

𝑛
2

• For 𝑗 > 𝑣: 𝑥𝑣(𝑣, 𝑗) = +1 if edge (𝑣, 𝑗) exists

• For 𝑗 < 𝑣: 𝑥𝑣(𝑗, 𝑣) = −1 if edge (𝑗, 𝑣) exists

• Idea:
– Use Dynamic-Sample-Full to sample an edge from each vertex 𝑣
– Collapse edges

– How to iterate?

• Property:
– For a set 𝑄 of nodes

– Consider: 𝑣∈𝑄 𝑥𝑣
– Claim: has non-zero in coordinate (𝑖, 𝑗) iff edge (𝑖, 𝑗) crosses

from 𝑄 to outside (i.e., 𝑄 ∩ 𝑖, 𝑗 = 1)

• Sketch enough for: for any set 𝑄, can sample an edge from 𝑄 !

10

(𝑖, 𝑗)

𝑖 +1

𝑗 -1

Dynamic Connectivity
• Sketching algorithm:

– Dynamic-Sample-Full for each 𝑥𝑣
• Check connectivity:

– Sample an edge from each node 𝑣
– Contract all sampled edges

– ⇒ partitioned the graph into a bunch of components
𝑄1, …𝑄𝑙 (each is connected)

– Iterate on the components 𝑄1, …𝑄𝑙
• How many iterations?

– 𝑂(log 𝑛) – each time we reduce the number of
components by a factor ≥ 2

• Issue: iterations not independent!
– Can use a fresh Dynamic-Sampling-Full for each of

the 𝑂(log 𝑛) iterations

11

𝑥𝑣 ∈ 𝑅
𝑝 where 𝑝 =

𝑛
2

for 𝑗 > 𝑣: 𝑥𝑣(𝑣, 𝑗) = +1 if ∃(𝑣, 𝑗)
for 𝑗 < 𝑣: 𝑥𝑣(𝑗, 𝑣) = −1 if ∃(𝑗, 𝑣)

A little history

• [Ahn-Guha-McGregor’12]: the above

streaming algorithm

– Overall 𝑂(𝑛 ⋅ log4𝑛) space

• [Kapron-King-Mountjoy’13]:

– Data structure for maintaining graph

connectivity under edge inserts/deletes

• First algorithm with log 𝑛 𝑂 1 time for

update/connectivity !

• Open since ‘80s

12

13

Section 2:

Dimension Reduction &

Sketching

Why?

• Application:

Nearest Neighbor Search

in high dimensions

• Preprocess: a set 𝐷 of points

• Query: given a query point

𝑞, report a point 𝑝 ∈ 𝐷 with

the smallest distance to 𝑞

𝑞

𝑝

Motivation

• Generic setup:

– Points model objects (e.g. images)

– Distance models (dis)similarity measure

• Application areas:

– machine learning: k-NN rule

– speech/image/video/music recognition,

vector quantization, bioinformatics, etc…

• Distance can be:

– Euclidean, Hamming

000000

011100

010100

000100

010100

011111

000000

001100

000100

000100

110100

111111 𝑞

𝑝

Low-dimensional: easy

• Compute Voronoi diagram

• Given query 𝑞, perform

point location

• Performance:

– Space: 𝑂(𝑛)

– Query time: 𝑂(log 𝑛)

High-dimensional case

• All exact algorithms degrade rapidly with the

dimension 𝑑

Algorithm Query time Space

Full indexing 𝑂(log 𝑛 ⋅ 𝑑) 𝑛𝑂(𝑑) (Voronoi diagram size)

No indexing –

linear scan

𝑂(𝑛 ⋅ 𝑑) 𝑂(𝑛 ⋅ 𝑑)

Dimension Reduction

• Reduce high dimension?!

– “flatten” dimension 𝑑 into dimension 𝑘 ≪ 𝑑

• Not possible in general: packing bound

• But can if: for a fixed subset of ℜ𝑑

